Iff 7 ! Fg J = C(x)

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Content of a Gaussian Polynomial Is Invertible

Let R be an integral domain and let f(X) be a nonzero polynomial in R[X ]. The content of f is the ideal c(f) generated by the coefficients of f . The polynomial f(X) is called Gaussian if c(fg) = c(f)c(g) for all g(X) ∈ R[X ]. It is well known that if c(f) is an invertible ideal, then f is Gaussian. In this note we prove the converse. Let R be a ring, that is, a commutative ring with unity. Le...

متن کامل

Essential P-Spaces: A Generalization of Door Spaces

An element f of a commutative ring A with identity element is called a von Neumann regular element if there is a g in A such that fg = f . A point p of a (Tychonoff) space X is called a P -point if each f in the ring C(X) of continuous realvalued functions is constant on a neighborhood of p. It is well-known that the ring C(X) is von Neumann regular ring iff each of its elements is a von Neuman...

متن کامل

Property C ′ ′ , strong measure zero sets and subsets of the plane

Let X be a set of reals. We show that • X has property C′′ of Rothberger iff for all closed F ⊆ R×R with vertical sections Fx (x ∈ X) null, ⋃ x∈X Fx is null; • X has strong measure zero iff for all closed F ⊆ R×R with all vertical sections Fx (x ∈ R) null, x∈X Fx is null.

متن کامل

A ] 7 D ec 1 99 9 Equivariant K - theory , wreath products , and Heisenberg algebra

Given a finite group G and a G-space X, we show that a direct sum FG(X) = ⊕ n≥0KGn(X n) ⊗ C admits a natural graded Hopf algebra and λ-ring structure, where Gn denotes the wreath product G ∼ Sn. FG(X) is shown to be isomorphic to a certain supersymmetric product in terms of KG(X) ⊗ C as a graded algebra. We further prove that FG(X) is isomorphic to the Fock space of an infinite dimensional Heis...

متن کامل

Syntactical Truth Predicates For Second Order Arithmetic

We introduce a notion of syntactical truth predicate (s.t.p.) for the second order arithmetic PA. An s.t.p. is a set T of closed formulas such that: i) T (t = u) iff the closed first order terms t and u are convertible, i.e. have the same value in the standard interpretation ii) T (A → B) iff (T (A) ⇒ T (B)) iii) T (∀xA) iff (T (A[x ← t]) for any closed first order term t) iv) T (∀XA) iff (T (A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996